Thermal Solutions for every challenge.

Upscaling processes for new battery raw materials from laboratory into industrial production ONEJOON GmbH

Axel Weiand | Peter Vervoort | New Business | September 2020

www.onejoon.de © ONEJOON | 2020 Agenda

Introduction ONEJOON Group

Case Studies new anode materials

Motivation – What drives us Improving performance for CAM

From Laboratory into Industrialization

Agenda

Introduction ONEJOON Group

Case Studies new anode materials

Motivation – What drives us Improving performance for CAM

From Laboratory into Industrialization

ONEJOON - Your Partner for Thermal Production Systems

Represented in 4 countries with 9 locations worldwide

240 employees worldwide (2020)

More than 100 design engineers, researchers and developers

Quality made by ONEJOON with own factories in Germany, Korea and China

Ongoing Culture of Innovation ensured by German and Korean Test Center and Research & Development Department

Experienced Project Management Team with Project Sizes up to **50 Mio €**

Thermal Process Equipment up to 3000 ° C and turnkey Thermal Process Production lines

Pioneer in electric high temperature furnaces Established in year 1888

Our Locations we're right where you need us.

Onejoon Core Teams around the globe can handle local projects on their own with an organisation of Sales, Project Management, Basic Engineering, Commissioning, Site Management and Service.

Factories and Facilities

Production of ONEJOON GmbH in Bovenden, Germany

Test Center of ONEJOON GmbH in Bovenden, Germany

Cathode Active Material Powder Process Engineering & Equipment

Thermal Processes this is our Expertise

Battery Materials Overview & Onejoon Focus

Agenda

Introduction ONEJOON Group

Case Studies new anode materials

2 Motivation – What drives us

Improving performance for CAM

From Laboratory into Industrialization

Motivation for future material processing

Lifetime Sustainability: Well to Wheel CO2 emissions

Fig. 9 'Well to wheel' lifecycle CO₂ emission comparisons (From presentation: 'The Powertrain of the Future - The Challenge of CO₂ and Emission Compliance', Michael Reissig, AVL List GmbH)

Motivation for future material processing

Lifetime Sustainability: Lifecycle CO2 emissions

Fig. 10 Lifecycle CO₂ emission comparisons, including 'cradle to grave' data. (From presentation: 'The Powertrain of the Future - The Challenge of CO₂ and Emission Compliance', Michael Reissig, AVL List GmbH)

Motivation: Current Production of Graphites

Acheson Process / Lengthwise Graphitization

Source: Saint Gobain

Mining

Source: anfre

............

Considerable reduction of the energy consumption and emmissions – Improvement of the lifetime sustainability of e-vehicles

- High control over temperature and atmosphere Improving the yield
- Control over the material properties and Improving of the average quality level
- Control over the exhaust properties –
 Continuous exhaust treatment
- Reduction of manual operation steps Integration into an automized production system

Keep challenging your own solution - continuous review of the complete process

............

Agenda

Introduction ONEJOON Group

Case Studies new anode materials

Motivation – What drives us Improving performance for CAM

3 From Laboratory into Industrialization

Problem of Upscaling Production

Many of promising new processes fail during industrial upscaling due to their complexity

16

From lab into large scale production

From Laboratory to industrial scale production

Where furnace suppliers come into account

Proof of Concept what does it take....?

Furnaces

.....

Technology Center we create your process.

Test Kiln "Multifunctional Kiln"

Technical Highlights:

- Versitile functions
- Gas preheating and Gas humidification
- Cooling zones at the inlet and outlet
- Use as conveyor belt or push-through oven possible

Technical Details:

Atmosphere	Air, inert gas, burnable gas
Temperature-Zone 1-3	Up to 700°C
Temperature-Zone 4-6	Up to 1,100°C
Number of seperately controllable heating zones	6
Heated length per kiln segment	Approx. 4400mm
Muffle profile	Width approx. 500mm Height approx. 200mm

What can we adjust

Process variables:

- Amount of powder /layer thickness
- Process atmosphere (Nitrogen, ...)
- Inlet position gas and direction of gas flow
- Flow rate gas (1-20 Nm³/hr)
- Gas/powder ratio
- Dwell time and temperature zone 1 & 2 independant
- Heating and cooling rates (within physical limits)

time

Current Testing Portfolio: subject to continuous adoption

Agenda

Introduction ONEJOON Group

Case Studies new anode materials

Motivation – What drives us Improving performance for CAM

From Laboratory into Industrialization

Graphite and Carbon for anode materials

............

25

Typical processes

- Drying
- Vapor release
- Pyrolysis
- Carbonization
- Activation
- Passivation
- Deposition

.

Graphitization

Concepts for Anode Materials based on experience from different industries.

............

27

ONEJOON

Roller Furnace

Concept Characteristics:	
Concept Complexity	high
Gas Tightness	difficult to achieve
Temperature Profile	very high flexibility
Atmosphere Profile	high flexibility
Reaction Control	depending on carrier / saggar
Possible Max Temperature	limited due to roller material
Energy Efficiency	low

Pusher Furnace

Front View

Concept Characteristics:

Concept Complexity	medium
Gas Tightness	very good
Temperature Profile	reasonable flexibility
Atmosphere Profile	reasonable flexibility
Reaction Control	depending on carrier / saggar
Possible Max Temperature	high
Energy Efficiency	medium

Rotary Furnace

Front View

Concept Characteristics:

Concept Complexity	medium
Gas Tightness	difficult to achieve
Temperature Profile	very limited flexibility
Atmosphere Profile	low
Reaction Control	very good
Possible Max Temperature	limited due to drum material
Energy Efficiency	high

Tube Furnace

Top View

Concept Characteristics:

Concept Complexity	medium
Gas Tightness	very good
Temperature Profile	limited
Atmosphere Profile	limited
Reaction Control	limited
Possible Max Temperature	very high
Energy Efficiency	high

................

Recirculation Furnace

......

Concept Characteristics:

Concept Complexity	high
Gas Tightness	good
Temperature Profile	very high flexibility (batch)
Atmosphere Profile	very high flexibility (batch)
Reaction Control	very high for flat carriers
Possible Max Temperature	low
Energy Efficiency	low

Customer Requirements:

- Throughput, e.g. 4000 tons/a
- Process pyrolysis
- Temperature 1,000 °C
- Atmosphere innert gas
- Focus
 excellent temperature control and waste gas control

Case study;

- Rotary furnace not possible due to metal contamination and long process time
- Roller furnace problem of condensation
- Pusher furnace tests showed this is the preferred solution, allowing long process times and good vapor removal

................

Tests in our test center: relevant aspects

............

Tests in our test center: relevant aspects

....

Muffle to guide gas flow close to product

Example of temperature profile in the furnace

Examples of different Saggar materials for material transport

ONEJOON

Concept for the production of carbon for batteries

Concept for the production of carbon for batteries

Customer Requirements:

- Throughput, e.g. 1000 tons/a
- Process proprietary chemical reaction
- Temperature 900 °C
- Atmosphere Highly flammable gasses
- Reactivity excellent gas powder interaction

ONEJOON

Case study;

- Rotary furnace limited due to dust release
- Roller furnace
 limited due to gas flow limitation and condensation
- Pusher furnace possible but study showed complexity of gas injection and off gas
- Recirculation furnace Simulation and tests proofed concept to provide high reaction efficiency

............

Example of the reactor

.....

Simulation

Υ

Z X

Simulation: Concept of the reactor

...............

Influence of reaction heat to product temperature

Iteration

Influence of reaction heat to product temperature

.............

Influence of reaction heat to product temperature

..............

Mean temperatures during cooling phase

Side view

Mean temperatures during cooling phase

Agenda

Introduction ONEJOON Group

Case Studies new anode materials

Motivation – What drives us

Improving performance for CAM

From Laboratory into Industrialization

NEW Development Pusher Kiln Principle & Advantages

General

- Throughput (kg/h)
- Investment (\$/kg)
- ↓ Footprint (m²)
- Energy consumption (KWh/kg)
- Process gas consumption (Nm³/h)

Process

............

- Temperature uniformity
- Adjustability and controllability
- Same condition situation for all saggars

....

- Process gas pre-heating (possible)
- Product homogeneity and quality

NEW Development Pusher Kiln Concept Validation by Testing and Simulation

Test Bench

Test Module

....

Pusher Pilot Kiln, 1 track, L=13m

Series of experiments have been done for validation of concept to optimise and validate the CFD simulation model (flow & heating)

............

NEW Development Pusher Kiln Testing and Simulation

.......

NEW Development Pusher Kiln Current Product with Double Lane)

.............

Battery Pusher Kiln Benefits

- Onejoon mass production kiln:
 - Almost no upscaling drawbacks!
 - ca. ~ 400 % increase of production capacity
 - ca. ~ 70 % reduce of kiln's footprint
 - ca. ~ 23 % reduce of energy consumption
 - ca. ~ 27 % reduce of Oxygen consumption

up to 1 Mio €/a saving in production costs*

* PSK 6x7 compared with a 43.7 m 4x2 RHK; 5 kg filling; 8 ct/kWh; 15 ct/m3 O₂

thus exploiting almost the full potential of CAM powder

Satisfying OEM Targets \rightarrow longer driving ranges and saving costs!

New battery materials – What is needed?

Chemistry between the developing parties

Open relationship with mutual respect and understanding of cultures

Extensive Process and Concept Expertise

- Extensive experience in regard of special atmosphere processes
- Wide concept know how
- Experience with production scale up
- Test center with good test cababilities

Global Company

- Manufacturing operations in the main production regions
- Service capabilities worldwide

Capability to listen to the challenges presented by the producer in order to provide the best solution !!!

Agenda

Introduction ONEJOON Group

Case Studies new anode materials

Motivation – What drives us

Improving performance for CAM

From Laboratory into Industrialization

Thank you.

Peter Vervoort +49 151 120 43 476 peter.vervoort@onejoon.de

Axel Weiand +49 151 189 68 460 axel.weiand@onejoon.de

ONEJOON – we never stop challenging the future.